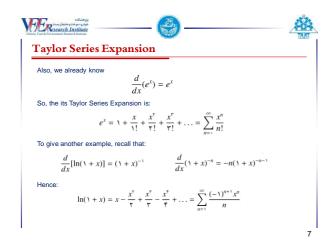


If a function	on $f(x)$ is <u>infinitely differentiable</u> at $x = x_0$, we can express:	
	$f(x) = a_* + a_1(x - x_*) + a_7(x - x_*)^7 + \ldots = \sum_{n=*}^{\infty} a_n(x - x_*)^n$	
To find the	e coefficients, initially, we put $x = x_0$:	
	$a_* = f(x_*)$	
Taking the	first derivative gives:	
	$f'(x) = a_1 + \tau a_\tau (x - x_*) + \tau a_\tau (x - x_*)^{\tau} + \tau a_\tau (x - x_*)^{\tau} + \dots$	
So,	$a_{\lambda} = f'(x_{\lambda})$	

Similarly, w	e take derivative	again:			
	f''(x) = r! d	$a_{\tau} + \tau! a_{\tau}(x - x_{\circ})$	$+ \mathbf{f} \times \mathbf{r} a_{\mathbf{f}} (x - x_{\circ})^{\mathbf{r}}$	+	
Putting x =	x ₀ results in:	$a_{\tau} = \frac{1}{\tau!} f''(x_{\circ})$			
In this way,	we may conclude	e:			
	$a_n = \frac{1}{n!} f^{(n)}(x_\circ)$	where	$f^{(n)} = \frac{d^n f}{dx^n}$		
Eventually,	we can write Tay	lor Series Expans	sion of $f(x)$ at $x =$	x ₀ as:	

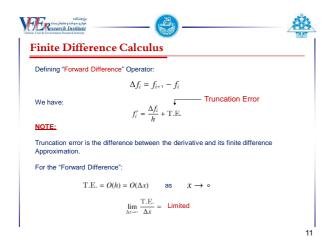
Now, we can v	write Taylor Series Expans	sion for other functions.	
since	$\frac{d}{dx}(\sin x) = \cos x,$	$\frac{d}{dx}(\cos x) = -\sin x$	
So, we have:	$\sin x = x - \frac{x^{r}}{r!} + \frac{x^{o}}{\delta!} - \frac{x^{v}}{v!}$	$+\ldots=\sum_{n=*}^{\infty}\frac{(-1)^{n}x^{n+1}}{(n+1)!}$	
	$\cos x = 1 - \frac{x^r}{r!} + \frac{x^r}{r!} - \frac{x}{s}$	$\frac{d^2}{dt} + \ldots = \sum_{n=1}^{\infty} \frac{(-1)^n x^{n}}{(n-1)!}$	

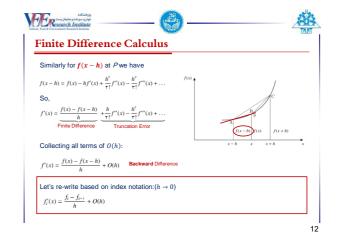


Instead we say	d of saying that sin(x) tend	ls to <mark>zero</mark> at the : g "Oh"	same rate that x tends	to zero,
	$\sin x = O(x)$	as	$x \rightarrow \circ$	
In gene	eral:			
	f(x) = O[g(x)]	as	$x \rightarrow \circ$	
lf				
	$\lim_{x\to\infty}\frac{f(x)}{g(x)}$	$= A$ and \sim	$ A < \infty$	

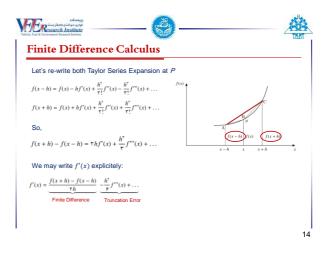
Bergering (here y charge y pho internate Recent) leading	.	-
Order Symbols		
For example:		
$\sin x = O(x)$	as $x \to \circ$	
since	$\lim_{x \to \infty} \frac{\sin x}{x} = x$	
Other examples for $x \to 0$		
$\cos x = O(1)$	$\tan x = O(x)$	
$\cos x - y = O(x^{r})$	$\cot x = O(x^{-1})$	
		9

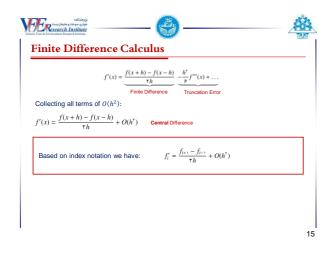
$f(x + h) = f(x) + hf'(x) + \frac{h^{\tau}}{r!}f''(x) + \frac{h^{\tau}}{r!}f'''(x) + \dots$		
So, $f(x+h) = f(x) h \qquad h^{T}$	C	
$f'(x) = \underbrace{\frac{f(x+h) - f(x)}{h}}_{h} \underbrace{-\frac{h}{r!}f''(x) - \frac{h^{r}}{r!}f'''(x) + \dots}_{h}$	Bp	
Finite Difference Truncation Error	f(x-h) = f(x)	
Collecting all terms of $O(h)$:	x-h x $x+h$	* x
$f'(x) = \frac{f(x+h) - f(x)}{h} + O(h)$ Forward Difference		

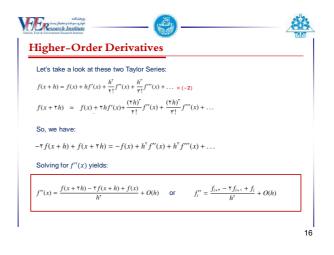




پژوشنگه مودرو سو فندر محمل ایست Vehicle, Fud & Environment Rosench Institute		
Finite Differe	nce Calculus	
Defining "Backward	Difference" Operator: $\nabla f_i = f_i - f_{i-1}$	
We have:	$f_i = f_i - f_{i-1}$ $f_i' = \frac{\nabla f_i}{h} + O(h)$ Truncation Error	
	$j_i = \frac{1}{h} + O(h)$	
		13

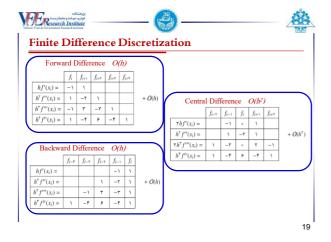


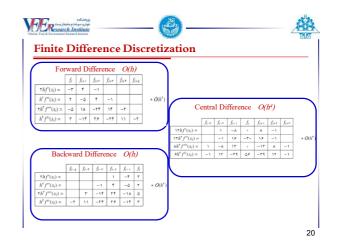


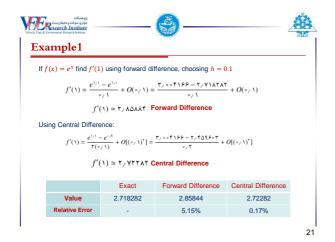


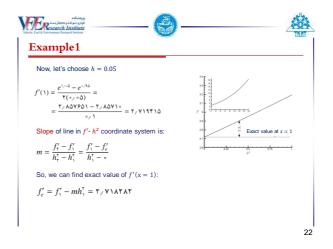
Recall:		
Recall:	$\Delta f_i = f_{i+1} - f_i$	
So,		
$\Delta(\Delta f_i) = \lambda$	$\Delta f_{i+1} - \Delta f_i = f_{i+\tau} - f_{i+1} - (f_{i+1} - f_i) = f_{i+\tau} - \tau f_{i+1} + f_i$	
Therefore, we c	an write forward difference for $f''(x)$ in operator notation	
	$f_i^{\prime\prime} = \frac{\Delta^{\rm r} f_i}{h^{\rm r}} + O(h)$	
Similarly, backw	ard difference for $f''(x)$ in operator notation would be:	

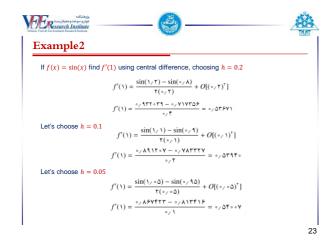
0	Order Forward and Backward Difference	
Recall:	$f(x+h) = f(x) + hf'(x) + \frac{h^{\dagger}}{r!}f''(x) + \frac{h^{\dagger}}{r!}f'''(x) + \dots$	
Solving for ;		
	$\begin{array}{ll} f'(x) & = & \displaystyle \frac{f(x+h)-f(x)}{h} - \\ & \displaystyle \frac{h}{\tau} \left[\displaystyle \frac{f(x+\tau h)-\tau f(x+h)+f(x)}{h^{\star}} + O(h) \right] + O(h^{\star}) \end{array}$	
Simplifying	of this equation results in:	
or:	$f'(x) = \frac{-rf(x) + rf(x+h) - f(x+rh)}{rh} + O(h^r)$	
	$f_i' = \frac{-\mathbf{\tilde{r}} f_i + \mathbf{\tilde{r}} f_{i+1} - f_{i+1}}{\mathbf{r} h} + O(h^{T})$	

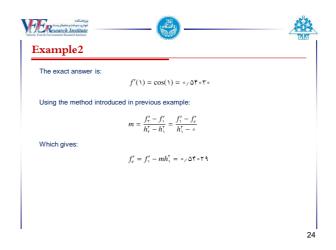












مینده مودرو، مو مند و معرط رست Velicite. Institute		
Example3		_
Consider $f(x) = \sin(10\pi)$	f(0), find $f'(0)$ by choosing $h = 0.2$	
The exact answer is:		
So,	$f'(x) = \gamma \circ \pi \cos \gamma \circ \pi x$	
f'(\circ) = $1 \circ \pi \cos 1 \circ \pi(\circ) = r_1/r_1 \delta r_1$	
Forward Difference	$\begin{split} f'(\circ) &= \frac{f(\circ, \tau) - f(\circ)}{\circ, \tau} + O(\circ, \tau) \\ &= \frac{\sin i \circ \pi(\circ, \tau) - \sin i \circ \pi(\circ)}{\circ, \tau} + O(\circ, \tau) = \frac{\sin \tau \pi - \circ}{\circ, \tau} = \circ \end{split}$	
Central Difference	$\begin{split} f'(\circ) &= \frac{f(\circ, \tau) - f(-\circ, \tau)}{\tau(\circ, \tau)} + O[(\circ, \tau)^{\dagger}] \\ &= \frac{\sin 1 \circ \pi(\circ, \tau) - \sin 1 \circ \pi(-\circ, \tau)}{\circ, \tau} + O[(\circ, \tau)^{\dagger}] = \circ \end{split}$	
		2

Example3	w	
Sxample5		
Consider $f(x) = \sin(10x)$	f(x), find $f'(0)$ by choosing $h = 0.2$	
The exact answer is:		
	$f'(x) = 1 \circ \pi \cos 1 \circ \pi x$	Problem?
So, f'(\circ) = $1 \circ \pi \cos 1 \circ \pi(\circ) = \pi 1/4109\pi$	T = h
5	·) = ··/ (00 ··/(()) = · ·// (W)	
	$f'(\circ) = \frac{f(\circ, \Upsilon) - f(\circ)}{\circ, \Upsilon} + O(\circ, \Upsilon)$	
Forward Difference	$=\frac{\sin i \circ \pi(\circ,\tau) - \sin i \circ \pi(\circ)}{\cos \tau} +$	$O(\alpha, \tau) = \frac{\sin \tau \pi - \circ}{\cos \tau}$
	- •/Y	•/r C
	$f(\circ,Y) = f(\circ,Y) - f(-\circ,Y) + O(-Y)^{T}$	
Central Difference	$f'(\circ) = \frac{f(\circ, \Upsilon) - f(-\circ, \Upsilon)}{\Upsilon(\circ, \Upsilon)} + O[(\circ, \Upsilon)^{\intercal}]$ $\frac{\sin 1 \circ \pi(\circ, \Upsilon) - \sin 1 \circ \pi(-\circ, \Upsilon)}{\sin 1 \circ \pi(-\circ, \Upsilon)}$	\sim
	$=\frac{\sin i \circ \pi(\circ / \tau) - \sin i \circ \pi(-\circ / \tau)}{\circ / \tau} + 0$	0[(0,7) ⁷] € 0

